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Abstract: - The paper discusses the transfer of heat energy within the system containing double heating   . 
Presented is an original mathematical model that describes the considered transfer of heat energy. The paper 
describes mathematical functions applicable for the model. Defined are typical scenarios that may arise within 
the system and given are conditions of their occurrence. Presented is a problem of measurement of heat energy 
using available calorimeters and proposed a solution for its elimination.  
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1 Introduction 
Today, heating systems are more complex than they 
were in the past. Heating systems in the past 
normally had only one heating circuit consisting of 
the device for heat energy1 production (input device 
of system) through which heat enters the system and 
the device on which it is consumed (output device 
of system). When the heating system consists of 
more than one heating circuits, the question is raised 
whether the mathematical model used for the system 
with one heating circuit may be applied to each of 
heating circuits. This paper describes mathematical 
model of the heating system with two heating 
circuits, describes the transfer of heat energy within 
the system, and shows that the answer to the above 
question is negative.  
 
 
2 Description of Considered System 
Studied heating system (see Figure 1.) consists of 
two heating circuits (N1-N3-N4-N6-N1 and N2-N3-
N4-N5-N2) connected on the common part (N2-N3-
N4-N5). Heating devices U1 and U2, through which 
heat leaves the heating system, are positioned on 
individual parts of each of the two heating circuits. 
Heating device U3, through which heat enters the 
heating system, is positioned on the common part of 

                                                 
1 If this energy is a positive we are talking about the 
energy of heating, if it is negative we are talking about 
the energy of cooling. 

the two heating circuits. The heat flow rate2 at 
devices U1, U2 and U3 are �̇�𝑄1, �̇�𝑄2 and �̇�𝑄3, 
respectively.     

The following figure shows the observed heating 
system:   

Fig.1 Double circular flow heating system  
 
Through the system circulates fluid. Its thermal 
losses may be neglected. The total mass of the fluid 
circulating through the system we consider a 
constant. The temperatures of the fluid leaving the 
devices U1, U2 and U3 are  𝑡𝑡1, 𝑡𝑡2 and 𝑇𝑇, 
respectively. The temperatures of the fluid entering 
the devices U1, U2 and U3 are  𝑇𝑇, 𝑇𝑇 and 𝑡𝑡, 
respectively. A three-way valve is positioned at the 
junction of independent parts of the circles and the 

                                                 
2 The heat transfer rate. We will say heat flow. 
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common part in the direction of fluid flow to the 
device U3 (the knob N2). Our focus is the mass 
fluid flow rate3 �̇�𝑚 of the fluid which passes through 
the three-way valve to the device U3. The three-way 
valve regulates the ratio of the mass fluid flow rates 
�̇�𝑚1 and  �̇�𝑚2, coming from the direction of the 
devices U1 and U2 in the total mass fluid flow �̇�𝑚 
entering the U3. Obviously  �̇�𝑚 = �̇�𝑚1 + �̇�𝑚2. 

For example, the heating device U3 may be a 
solar collector or a gas heater, while heating devices 
U1 and U2 may be a heat storages with a heat 
exchanger. 
 
 
3 Mathematical Expressions of the 
System  
It is assumed that  𝑡𝑡1 < 𝑡𝑡2. Assuming that there is 
no loss of energy, equation  �̇�𝑄1 + �̇�𝑄2 = �̇�𝑄3 is valid. 
The share of fluid flow �̇�𝑚1 in the fluid flow �̇�𝑚 is 
denoted by  𝛼𝛼, (0 ≤ 𝛼𝛼 ≤ 1). The parameter 𝛼𝛼 is 
regulated by the three-way valve and it is its 
characteristics. Now we have that  �̇�𝑚1 = 𝛼𝛼 �̇�𝑚 , and 
 �̇�𝑚2 = (1 − 𝛼𝛼)�̇�𝑚. As 𝑡𝑡1 < 𝑡𝑡2, at three-way valve, 
heat energy is moving from the fluid flow �̇�𝑚2 to the 
fluid flow �̇�𝑚1. With �̇�𝑞1 is denoted heat flow of the 
heat energy received by the fluid flow �̇�𝑚1 at time of 
mixing with fluid flow  �̇�𝑚2. With −�̇�𝑞2 is denoted 
heat flow of the heat energy transfers from the 
warmer fluid flow �̇�𝑚2 to the cooler fluid flow �̇�𝑚1 at 
their interference. Due to energy conservation law 
we have �̇�𝑞1 = −�̇�𝑞2. Suppose that the fluid heat 
capacity 𝑐𝑐 is constant for observed temperatures of 
the fluids.  
 Since  �̇�𝑞1 = �̇�𝑚1(𝑡𝑡 − 𝑡𝑡1)𝑐𝑐 = 𝛼𝛼(𝑡𝑡 − 𝑡𝑡1)�̇�𝑚𝑐𝑐, and 
�̇�𝑞2 = �̇�𝑚2(𝑡𝑡 − 𝑡𝑡2)𝑐𝑐 = (1 − 𝛼𝛼)(𝑡𝑡 − 𝑡𝑡2)�̇�𝑚𝑐𝑐 we obtain 
that the fluid temperature entering the U3 is  

𝑡𝑡 = 𝛼𝛼𝑡𝑡1 + (1 − 𝛼𝛼)𝑡𝑡2 .                   (1) 
Obviously,  𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2. Substituting this equality in 
terms of  �̇�𝑞1 and �̇�𝑞2  we have  
�̇�𝑞1 = −�̇�𝑞2 = 𝛼𝛼(1 − 𝛼𝛼)(𝑡𝑡2 − 𝑡𝑡1)�̇�𝑚𝑐𝑐 =  
      = [−(𝑡𝑡2 − 𝑡𝑡1)𝛼𝛼2 + (𝑡𝑡2 − 𝑡𝑡1)𝛼𝛼]�̇�𝑚𝑐𝑐,                      
(2) 
i.e., flow rate of the heat passes from the fluid flow 
�̇�𝑚2 to the fluid flow �̇�𝑚1 is a square function of the 
parameter α. The temperature of the fluid at the 
outlet of the device U3, in relation to the 
temperature at the entrance, increases by  𝑇𝑇 − 𝑡𝑡, and 
the heat flow rate of the fluid flow �̇�𝑚 is increased to 
�̇�𝑄3 = �̇�𝑚(𝑇𝑇 − 𝑡𝑡)𝑐𝑐. A part of the heat flow of the heat 
energy generated in the device U3  �̇�𝑑1 =
𝛼𝛼�̇�𝑚(𝑇𝑇 − 𝑡𝑡)𝑐𝑐  fluid flow �̇�𝑚1 transfers to the device 

                                                 
3 We will say fluid flow. 

U1 and the rest of the generated heat flow �̇�𝑑2 =
(1 − 𝛼𝛼)�̇�𝑚(𝑇𝑇 − 𝑡𝑡)𝑐𝑐 fluid flow �̇�𝑚2 transfers to the 
device U2. The heat flows �̇�𝑄1 and  �̇�𝑄2 that comes 
out of the system through the devices U1 and U2 are 
given by:  
�̇�𝑄1 = �̇�𝑚1(𝑇𝑇 − 𝑡𝑡1)𝑐𝑐 = 
      = 𝛼𝛼(𝑇𝑇 − 𝑡𝑡 + 𝑡𝑡 − 𝑡𝑡1)�̇�𝑚𝑐𝑐 = 
      = �̇�𝑑1 +  �̇�𝑞1 ,                   (3) 
�̇�𝑄2 = �̇�𝑚2(𝑇𝑇 − 𝑡𝑡2)𝑐𝑐 = 
      = (1 − 𝛼𝛼)(𝑇𝑇 − 𝑡𝑡 + 𝑡𝑡 − 𝑡𝑡2)�̇�𝑚𝑐𝑐 =  

= �̇�𝑑2 + �̇�𝑞2 = �̇�𝑑2 −  �̇�𝑞1 .                 (4) 
Thus, the aforementioned shares of the heat flow of  
transmitted energy entered into the system via the 
device U3 (�̇�𝑑1 and �̇�𝑑2) are not equal to amounts of 
heat flow �̇�𝑄1 and �̇�𝑄2 that comes out of the system 
via the devices U1 and U2. The amount �̇�𝑄1 is larger 
and �̇�𝑄2 is smaller just for the amount  �̇�𝑞1 which is 
the amount of the heat flow transferred from the 
device U2 to the device U1.  
While �̇�𝑑1 and �̇�𝑑2 are the shares of the heat flow of 
the incoming heat energy moved from the heating 
device U3 to the heating devices U1 and U2,  �̇�𝑞1 is 
the heat flow of heat energy moved from the 
warmer device U2 to the cooler device U1 and 
depends on the three-way valve mixing parameter 𝛼𝛼. 
 Example function  �̇�𝑑1(𝛼𝛼),  �̇�𝑑2(𝛼𝛼),  �̇�𝑞1(𝛼𝛼) and 
�̇�𝑞2(𝛼𝛼) , is shown in Figure 2 (case:  �̇�𝑚𝑐𝑐 = 0,660 ; 
𝑇𝑇 − 𝑡𝑡 = 14; 𝑡𝑡2 − 𝑡𝑡1 = 12,). Each of functions �̇�𝑞1 
and �̇�𝑞2 its extreme value  ±0,25(𝑡𝑡2 − 𝑡𝑡1)�̇�𝑚𝑐𝑐 
achieve for  𝛼𝛼 = 0,5 , and for  𝛼𝛼 = 0  and  𝛼𝛼 = 1  
their value is zero. Functions   �̇�𝑑1 and   �̇�𝑑2 are linear 
functions of the parameter 𝛼𝛼 and worth ratio:  
�̇�𝑑1:  �̇�𝑑2 = �̇�𝑚1: �̇�𝑚2 = 𝛼𝛼: (1 − 𝛼𝛼).  
 

 
Fig.2 Amounts of transferred heat flow  
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 Let us denote the rise in temperature of the fluid 
in the U3  𝑇𝑇 − 𝑡𝑡  with  ∆𝑇𝑇  and denote difference of 
output temperature at the devices U2 and U1 
 𝑡𝑡2 − 𝑡𝑡1 with  ∆𝑡𝑡1,2. By including  ∆𝑇𝑇 , ∆𝑡𝑡1,2 and 
expression for the temperature  𝑡𝑡 = 𝛼𝛼𝑡𝑡1 + (1 − 𝛼𝛼)𝑡𝑡2 
in (3) and (4) we get that �̇�𝑄1 and �̇�𝑄2 are quadratic 
function of the parameter 𝛼𝛼 as follows:  
�̇�𝑄1(𝛼𝛼) = �−∆𝑡𝑡1,2 𝛼𝛼2 + �∆𝑡𝑡1,2 + ∆𝑇𝑇�𝛼𝛼��̇�𝑚𝑐𝑐 = 

             = −∆𝑡𝑡1,2 𝛼𝛼 �𝛼𝛼 − �1 + ∆𝑇𝑇
∆𝑡𝑡1,2

�� �̇�𝑚𝑐𝑐 ,                  
(5) 
�̇�𝑄2(𝛼𝛼) = �∆𝑡𝑡1,2 𝛼𝛼2 − �∆𝑡𝑡1,2 + ∆𝑇𝑇�𝛼𝛼 + ∆𝑇𝑇��̇�𝑚𝑐𝑐 = 

             = ∆𝑡𝑡1,2 (1 − 𝛼𝛼) �−𝛼𝛼 + ∆𝑇𝑇
∆𝑡𝑡1,2

� �̇�𝑚𝑐𝑐 .                   
(6) 
It is valid that: �̇�𝑄1(0) = 0,  �̇�𝑄1(1) = ∆𝑇𝑇�̇�𝑚𝑐𝑐 , 
�̇�𝑄2(0) = ∆𝑇𝑇�̇�𝑚𝑐𝑐 ,  �̇�𝑄2(1) = 0.  
Also is true that:   
�̇�𝑄1(𝛼𝛼) + �̇�𝑄2(𝛼𝛼) = �̇�𝑄1(1) = �̇�𝑄2(0) = ∆𝑇𝑇�̇�𝑚𝑐𝑐 =  �̇�𝑄3.  
 Generally, for  ∆𝑇𝑇 ≠ −∆𝑡𝑡1,2  function  �̇�𝑄1(𝛼𝛼) has 
two roots (zeros):  
𝛼𝛼1 = 0  and  𝛼𝛼2 = 1+ ∆𝑇𝑇

∆𝑡𝑡1,2
 .                 (7) 

For  ∆𝑇𝑇 = −∆𝑡𝑡1,2  function  �̇�𝑄1(𝛼𝛼) has one root  
𝛼𝛼1 = 𝛼𝛼2 = 0.  
Function  �̇�𝑄2(𝛼𝛼), for  ∆𝑇𝑇 ≠ ∆𝑡𝑡1,2  has two roots:  
𝛼𝛼1 = ∆𝑇𝑇

∆𝑡𝑡1,2
 , 𝛼𝛼2 = 1 .                (8) 

For  ∆𝑇𝑇 = ∆𝑡𝑡1,2 , function  �̇�𝑄2(𝛼𝛼)  has one root  
𝛼𝛼1 = 𝛼𝛼2 = 1. 
Function  �̇�𝑄1(𝛼𝛼) has a maximum for  
𝛼𝛼𝑀𝑀 = 1

2
�1 + ∆𝑇𝑇

∆𝑡𝑡1,2
�  and  

�̇�𝑄1(𝛼𝛼𝑀𝑀) = ∆𝑡𝑡1,2𝛼𝛼𝑀𝑀2 �̇�𝑚𝑐𝑐. 
Function  �̇�𝑄2(𝛼𝛼) has a minimum for  
𝛼𝛼𝑚𝑚 = 1

2
�1 + ∆𝑇𝑇

∆𝑡𝑡1,2
�  and  

�̇�𝑄2(𝛼𝛼𝑚𝑚 ) = ∆𝑇𝑇�̇�𝑚 𝑐𝑐 − ∆𝑡𝑡1,2𝛼𝛼𝑚𝑚2 �̇�𝑚𝑐𝑐. 
Because we assume that ∆𝑡𝑡1,2 > 0 (i.e.  𝑡𝑡1 < 𝑡𝑡2), 
always is true that �̇�𝑄1(𝛼𝛼𝑀𝑀) > 0  and  �̇�𝑄2(𝛼𝛼𝑚𝑚) < 0. 
We will be interested in only the case when the 
zeros are within the interval [0,1]. 
 For  ∆𝑇𝑇 > 0:  �̇�𝑄1(𝛼𝛼)  has one root,  𝛼𝛼1 = 0, on 
[0,1];  �̇�𝑄2(𝛼𝛼) on [0,1] has one root  𝛼𝛼2 = 1  if 
 ∆𝑇𝑇 ≥ ∆𝑡𝑡1,2, and two earlier mentioned roots (see 8) 
when 0 < ∆𝑇𝑇 < ∆𝑡𝑡1,2.  
�̇�𝑄1(𝛼𝛼) has maximum in 𝛼𝛼𝑀𝑀  on [0,1], and �̇�𝑄2(𝛼𝛼) has 
minimum in 𝛼𝛼𝑚𝑚  on [0,1]  if  0 < ∆𝑇𝑇 ≤ ∆𝑡𝑡1,2. 
 For  ∆𝑇𝑇 < 0:  �̇�𝑄1(𝛼𝛼) on [0,1] has two earlier 
mentioned roots (see 7) when −∆𝑡𝑡1,2 < ∆𝑇𝑇 < 0, 
and only one root  𝛼𝛼1 = 0  when  ∆𝑇𝑇 ≤ −∆𝑡𝑡1,2; 
�̇�𝑄2(𝛼𝛼) has only one root, 𝛼𝛼2 = 1, on [0,1].  

�̇�𝑄1(𝛼𝛼) has maximum in  𝛼𝛼𝑀𝑀 , a  �̇�𝑄2(𝛼𝛼) has minimum 
in  𝛼𝛼𝑚𝑚  on [0,1] when −∆𝑡𝑡1,2 ≤ ∆𝑇𝑇 < 0. 
 See Figure 3. (case: �̇�𝑚𝑐𝑐 = 0,66; 𝑡𝑡2 − 𝑡𝑡1 = 12 ). 
It clearly shows that, in some cases, �̇�𝑄2 can take a 
negative value. In these cases through the device U2 
heat energy enters the system, i.e. system cools the 
heating device U2. The heat energy that is in this 
case entered into the system is transferred to the 
cooler device U1.  
 

 
Fig.3 Heat flows emitted at devises U2 and U1 

 
 In case  ∆𝑡𝑡1,2 = 0  (i.e., 𝑡𝑡1 = 𝑡𝑡2) we have:  
�̇�𝑞1 = −�̇�𝑞2 = 0,  
�̇�𝑄1(𝛼𝛼) = �̇�𝑑1 = 𝛼𝛼∆𝑇𝑇�̇�𝑚𝑐𝑐,  
�̇�𝑄2(𝛼𝛼) = �̇�𝑑2 = (1 − 𝛼𝛼)∆𝑇𝑇�̇�𝑚𝑐𝑐. 
 In case  ∆𝑡𝑡1,2 < 0  (i.e. 𝑡𝑡1 > 𝑡𝑡2 ) terms for  �̇�𝑞1, 
�̇�𝑞2, �̇�𝑑1, �̇�𝑑2, 𝑄𝑄1 and �̇�𝑄2 remain the same.  
 If we consider functions �̇�𝑄1 and �̇�𝑄2 in (5) and (6) 
as a function of three variables  𝛼𝛼, ∆𝑇𝑇 and  ∆𝑡𝑡1,2, it 
is easy to show that:  
�̇�𝑄1�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = �̇�𝑄2�1 − 𝛼𝛼,∆𝑇𝑇,−∆𝑡𝑡1,2�, 
�̇�𝑄2�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = �̇�𝑄1�1 − 𝛼𝛼,∆𝑇𝑇,−∆𝑡𝑡1,2�, 
                   (9) 
�̇�𝑄1�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = −�̇�𝑄2�1− 𝛼𝛼,−∆𝑇𝑇,∆𝑡𝑡1,2�, 
�̇�𝑄2�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = −�̇�𝑄1�1− 𝛼𝛼,−∆𝑇𝑇,∆𝑡𝑡1,2�, 
                 (10) 
�̇�𝑄1�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = −�̇�𝑄1�𝛼𝛼,−∆𝑇𝑇,−∆𝑡𝑡1,2�, 
�̇�𝑄2�𝛼𝛼,∆𝑇𝑇,∆𝑡𝑡1,2� = −�̇�𝑄2�𝛼𝛼,−∆𝑇𝑇,−∆𝑡𝑡1,2�. 
                 (11) 

 Notice that  �̇�𝑄1 and �̇�𝑄2 given in (5) and (6) are 
linear functions in ∆𝑇𝑇. Functions �̇�𝑑1, �̇�𝑑2 and �̇�𝑄3 are 
also linear functions in ∆𝑇𝑇. Figure 4 (the case 
 �̇�𝑚𝑐𝑐 = 0,66;  ∆𝑡𝑡1,2 = 12;𝛼𝛼 = 0,7) shows graphs of 
functions �̇�𝑑1(∆𝑇𝑇), �̇�𝑑2(∆𝑇𝑇), �̇�𝑄1(∆𝑇𝑇), �̇�𝑄2(∆𝑇𝑇) and 
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�̇�𝑄3(∆𝑇𝑇). The abscissas of points of intersections of 
lines in the picture do not depend on  �̇�𝑚𝑐𝑐.  
 

 
Fig.4 Heat flows emitted at devises U1, U2 (�̇�𝑄1, �̇�𝑄2) 
and generated at device U3 (�̇�𝑄3) as a function of ∆𝑇𝑇 

and typical cases  
 
 Further we discuss several possible cases and 
thereby we allow that energy �̇�𝑄3 may be zero or 
negative, i.e. it is possible case of cooling system 
through U3, that is  𝑇𝑇 ≤ 𝑡𝑡  (∆𝑇𝑇 ≤ 0 ).  
 
 
4 Possible Typical Cases of Energy 
Transfer System 
If  ∆𝑡𝑡1,2 = 0, i.e.   𝑡𝑡1 = 𝑡𝑡2 then  �̇�𝑞1 = �̇�𝑞2 = 0,  
�̇�𝑄1 = 𝛼𝛼 ∆𝑇𝑇𝑚𝑚 𝑐𝑐  and  �̇�𝑄2 = (1 − 𝛼𝛼)∆𝑇𝑇�̇�𝑚𝑐𝑐.  
If  𝛼𝛼 = 0  then  �̇�𝑞1 = �̇�𝑞2 = 0,  �̇�𝑄2 = �̇�𝑄3 = ∆𝑇𝑇�̇�𝑚𝑐𝑐  
and �̇�𝑄1 = 0.  
If  𝛼𝛼 = 1  then  �̇�𝑞1 = �̇�𝑞2 = 0,  �̇�𝑄1 = �̇�𝑄3 = ∆𝑇𝑇�̇�𝑚𝑐𝑐 and 
�̇�𝑄2 = 0.  
If  ∆𝑇𝑇 = 0  it is true that  �̇�𝑄1 =  �̇�𝑞1, and  �̇�𝑄2 = �̇�𝑞2, 
i.e. heat is transferred only within the system from 
the warmer device U2 to the colder device U1 when 
∆𝑡𝑡1,2 > 0 and from the warmer device U1 to the 
colder device U2 when ∆𝑡𝑡1,2 < 0.  
 Furthermore, we observe the case when ∆𝑡𝑡1,2 >
0 (i.e. 𝑡𝑡1 < 𝑡𝑡2). We assume that  0 < 𝛼𝛼 < 1 and that  
∆𝑇𝑇 can take both positive and negative values. 
Consider the typical cases (scenarios) depending on 
the values that  ∆𝑇𝑇 can take.  
 Consider a combination of possible cases when  
�̇�𝑄1, �̇�𝑄2 and  ∆𝑇𝑇 are bigger, smaller and equal to zero. 
Then all observed cases can be reduced to four 
disjunctive typical cases determined by a four 
interval values for  ∆𝑇𝑇. We denote each of these 
cases, i.e. each of these intervals, with large letters 
A, B, C and D. They are shown in Figure 5. with its 

three contact points. Transitional cases, i.e. the join 
points of two intervals, are denoted by AB, BC and 
CD.  
 

Fig.5 Typical case intervals 
 
From equation (5) it follows that �̇�𝑄1 is  > 0  when 
∆𝑇𝑇 > −(1 − 𝛼𝛼)∆𝑡𝑡1,2 , and from (6) that �̇�𝑄2 is > 0 
when ∆𝑇𝑇 > 𝛼𝛼∆𝑡𝑡1,2. Because −(1 − 𝛼𝛼)∆𝑡𝑡1,2 < 0 
and 𝛼𝛼∆𝑡𝑡1,2 > 0 we have that for ∆𝑇𝑇 > 𝛼𝛼∆𝑡𝑡1,2 , �̇�𝑄1, 
�̇�𝑄2 and ∆𝑇𝑇 are  > 0. Let us denote this typical case 
with A. Inequality ∆𝑇𝑇 > 𝛼𝛼∆𝑡𝑡1,2  is equivalent to the 
simpler one  𝑇𝑇 > 𝑡𝑡2 . If in  ∆𝑇𝑇 > 𝛼𝛼∆𝑡𝑡1,2 we replace 
 ∆𝑇𝑇  with  𝑇𝑇 − 𝑡𝑡, then include equality (1), and all 
but the 𝑇𝑇 switch to the right side we get the 
inequality  𝑇𝑇 > 𝑡𝑡2. We do the same for all other 
cases and get the result in the Table 1 (see Table 1 
in Appendix). 
 Now by measuring values  𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡 and  𝑇𝑇 we can 
easily determine the typical cases in a transfer of 
heat energy in the system with dual heat circular 
flow. We see (Table 1) that in a typical case B, 
despite of warming on input device U3, the output 
device U2 is cooling. Also at typical case C, despite 
of cooling the input device U3, the output device U1 
is heating.  
 Notice that the transitional case AB occurs when 
the proportion of ∆𝑇𝑇 in ∆𝑡𝑡1,2  is 𝛼𝛼; BC occurs when 
∆𝑇𝑇 = 0, and CD when the proportion of −∆𝑇𝑇  in 
∆𝑡𝑡1,2  is 1 − 𝛼𝛼. So, �̇�𝑄2 becomes negative when the 
share of  ∆𝑇𝑇 in  ∆𝑡𝑡1,2  is less than  𝛼𝛼.  
 For example, consider the case when ∆𝑡𝑡1,2 = 12 
and 𝛼𝛼 = 0,70 (see Figure 4.). Then for  ∆𝑇𝑇 > 8,40 
we have a typical case A, for 0 < ∆𝑇𝑇 < 8,40  case 
B, for −3,60 < ∆𝑇𝑇 < 0  case C and for ∆𝑇𝑇 <
−3,60  typical case D.  
 We can raise the question whether it is possible, 
and if so how, to choose parameter  𝛼𝛼  such to 
obtain a desired or to avoid unwanted case. For 
example, when ∆𝑡𝑡1,2 = 12 and ∆𝑇𝑇 = 3, for 
0 < 𝛼𝛼 < 0,25 we have the typical case A, but for 
0,25 < 𝛼𝛼 < 1 we have the typical case B. The 
answer to the raised question is not considered in 
this paper. 
 Consider the typical cases depending on the 
values that can take 𝛼𝛼  (0 < 𝛼𝛼 < 1). Then all 
observed cases can be reduced to three disjunctive 
typical cases determined by three intervals value for 
𝛼𝛼. They are clearly shown in Figure 6 with the two 
join points.  
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Fig.6 Typical case intervals 
 
From equation (5) it follows that   �̇�𝑄1 > 0  when 
 𝛼𝛼 < 1 + ∆𝑇𝑇/∆𝑡𝑡1,2 , and from (6) it follows that 
�̇�𝑄2 < 0 when 𝛼𝛼 > ∆𝑇𝑇/∆𝑡𝑡1,2. Thus, on the interval 

� ∆𝑇𝑇
∆𝑡𝑡1,2

, 1 + ∆𝑇𝑇
∆𝑡𝑡1,2

�  �̇�𝑄1 is positive and �̇�𝑄2 is negative. 
Only one of the edges of this interval can be inside 
(0,1). For ∆𝑇𝑇 > 0  it is  ∆𝑇𝑇

∆𝑡𝑡1,2
, for  ∆𝑇𝑇 < 0  it is 

 1 + ∆𝑇𝑇
∆𝑡𝑡1,2

. Other cases as well as comparison with 
cases in the previous table are given in the following 
Table 2 (see Table 2 in Appendix).  
 By measuring, we can get the values  𝑡𝑡1,  𝑡𝑡2,  𝑡𝑡 
and 𝑇𝑇 and then calculate ∆𝑇𝑇 and ∆𝑡𝑡1,2. When 
 ∆𝑇𝑇 > ∆𝑡𝑡1,2 we have the case A regardless of the 
value of a 𝛼𝛼  (0 < 𝛼𝛼 < 1).  
When  0 < ∆𝑇𝑇 < ∆𝑡𝑡1,2, then for 𝛼𝛼 < ∆𝑇𝑇

∆𝑡𝑡1,2
 we have 

the case A, and for 𝛼𝛼 > ∆𝑇𝑇
∆𝑡𝑡1,2

 the case B.  
When  −∆𝑡𝑡1,2 < ∆𝑇𝑇 < 0, then for  𝛼𝛼 < 1 + ∆𝑇𝑇

∆𝑡𝑡1,2
  we 

have the case D, and for  𝛼𝛼 > 1 + ∆𝑇𝑇
∆𝑡𝑡1,2

  the case C. 
When  ∆𝑇𝑇 < −∆𝑡𝑡1,2  we have the case D regardless 
of the value of  𝛼𝛼  (0 < 𝛼𝛼 < 1).  

 Furthermore, we observe the case when ∆𝑡𝑡1,2 <
0 (i.e. 𝑡𝑡2 < 𝑡𝑡1). By using equation (9) the results 
obtained earlier (in the case when ∆𝑡𝑡1,2 > 0) can 
be used in this case  
By substituting:  𝛼𝛼  with  1 −  𝛼𝛼, 𝑡𝑡1 with 𝑡𝑡2, 𝑡𝑡2 with 
𝑡𝑡1,  �̇�𝑄1 with �̇�𝑄2  and  �̇�𝑄2 with �̇�𝑄1 in Table 1, we get a 
new table, Table 3 with a new typical cases A', B', 
C' and D' which applies to the case ∆𝑡𝑡1,2 < 0 (see 
Table3 in Appendix).  
The same could be done and for Table 2. 
 
 
5 The Problem with Calorimeters  
Let us observe the operation of the system during 
defined time interval 𝜏𝜏, e.g. one month. Heat energy 
that enters or leaves the system through devices U3, 
U1 and U2 is measured using calorimeters. 
Calorimeters with a single counter can measure 
either energy or heating or cooling, while those with 
two counters4 can measure both the energy of 
heating and cooling energy.  

For further consideration we define  

                                                 
4 The amount on each counter is positive.  

�̇�𝑄1
+ = ��̇�𝑄1  , �̇�𝑄1 > 0

0   , �̇�𝑄1 ≤ 0
� ,    �̇�𝑄1

− = �0  , �̇�𝑄1 ≥ 0
�̇�𝑄1 , �̇�𝑄1 < 0

� , 

�̇�𝑄2
+ = ��̇�𝑄2  , �̇�𝑄2 > 0

0   , �̇�𝑄2 ≤ 0
� ,    �̇�𝑄2

− = �0  , �̇�𝑄2 ≥ 0
�̇�𝑄2 , �̇�𝑄2 < 0

� ,  

�̇�𝑄3
+ = ��̇�𝑄3  , �̇�𝑄3 > 0

0   , �̇�𝑄3 ≤ 0
� ,    �̇�𝑄3

− = �0  , �̇�𝑄3 ≥ 0
�̇�𝑄3 , �̇�𝑄3 < 0

� .  

 Let us observe the case of heating the system 
through the heating device U3 (∆𝑇𝑇 > 0, i.e.  �̇�𝑄3 >
0). In this case only typical cases A, B, A' and B' are 
possible. The total energy of heating that during the 
observed time interval enters the system through the 
device U3 is denoted with 𝐾𝐾3

+. Then  
𝐾𝐾3

+ = ∫ 𝑑𝑑�̇�𝑄3
𝜏𝜏

0 .  
Suppose calorimeters on the devices U1 and U2 
measure only energy of heating (positive heat 
energy, energy that through the devices U1 and U2 
leaves system). The total energy of heating that 
during the observed time interval, in which ∆𝑇𝑇 > 0, 
leaves the system through the devices U1 and U2 is 
denoted with 𝐾𝐾1

++ and 𝐾𝐾2
++ respectively. These 

amounts are measured5 on the calorimeters. Then 
we have  
𝐾𝐾1

++ = ∫ 𝑑𝑑�̇�𝑄1
+𝜏𝜏

0   and  

𝐾𝐾2
++ = ∫ 𝑑𝑑�̇�𝑄2

+𝜏𝜏
0  .  

If in a given time interval typical case B or B' did 
not appear then is valid the equation  
𝐾𝐾1

++ + 𝐾𝐾2
++ =  𝐾𝐾3

+.  
However, it is generally  
𝐾𝐾1

++ +  𝐾𝐾2
++ ≠  𝐾𝐾3

+, moreover  
𝐾𝐾1

++ +  𝐾𝐾2
++ ≥  𝐾𝐾3

+.  

 Therefore, the sum of the measured energy of 
heating on devices U1 and U2 is not equal to the 
energy of heating generated by at heating device U3 
and generally is higher than it. This is because, in 
typical cases of B and B ', heat energy through the 
warmer devices (U2 or U1) entered the system 
(negative output of heat energy) and moved to the 
cooler device6 (U1 or U2). This transition is not 
taken into account on the calorimeter attached to the 
warmer device, which measures only positive 
energy, but on the calorimeter at the colder device it 
is taken into account as a positive heat energy. 
Therefore, if the device U1 is cooler than U2, the 
amount 𝐾𝐾1

++ is a sum of energy of heating generated 
                                                 
5 It means, the difference between amounts at calorimeter 
counter at the end and at the beginning of the interval 
observed.  
6 The colder device is one with lower fluid temperature at 
the outlet.  
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by the device U3 that is passed to U1, and the 
energy passed from U2 to U1 when heat is entering 
the heating system through U2.  

 The problem can be avoided if devices U1 and 
U2 are supplied with calorimeters which measure 
both heating energy (output, positive thermal 
energy) and cooling energy (input, negative thermal 
energy). Let 𝐾𝐾1

−+ and 𝐾𝐾2
−+ is heat energy which 

entered into the system through U1 and U2 (cooling 
energy) during the observation time interval, in 
which ∆𝑇𝑇 > 0. These amounts are measured on the 
calorimeters as energy of cooling. In observed case 
we have  
𝐾𝐾1
−+ = −∫ 𝑑𝑑�̇�𝑄1

−𝜏𝜏
0   and  

𝐾𝐾2
−+ = −∫ 𝑑𝑑�̇�𝑄2

−𝜏𝜏
0  .  

Then 𝐾𝐾1
++ − 𝐾𝐾2

−+ is thermal energy generated in the 
U3, which passed to U1 and  𝐾𝐾2

++ − 𝐾𝐾1
−+ is thermal 

energy generated in U3, which passed to U2. It can 
be seen that the amount of these thermal energy is 
easily calculated. So, we have the equality:  
𝐾𝐾1

++ − 𝐾𝐾2
−+ + 𝐾𝐾2

++ −𝐾𝐾1
−+ =  𝐾𝐾3

+. 
Because, in this case,  𝐾𝐾3

+ can be calculated using 
the known values 𝐾𝐾1

++, 𝐾𝐾1
−+, 𝐾𝐾2

++ and 𝐾𝐾2
−+, there is 

no need for calorimeter at the device U3 which 
measures the amount of  𝐾𝐾3

+. Then only two 
calorimeters on devices U1 and U2, which measures 
the heating energy (heat supply to devices) and 
cooling energy (heat removal from the device) are 
sufficient.  
 The same problem arises in the case of cooling 
system (bringing negative heat energy in the system, 
∆𝑇𝑇 < 0, i. e. �̇�𝑄3 < 0) through the device U3. Total 
energy of cooling (negative heat) that during the 
observed time interval enters the system through U3 
denote with 𝐾𝐾3

−. Similar to ∆𝑇𝑇 > 0 and for ∆𝑇𝑇 < 0, 
ie, in the case of cooling, we introduce 𝐾𝐾1

−−, 𝐾𝐾1
+−, 

𝐾𝐾2
−− and 𝐾𝐾2

+−. Similar to the earlier we get that 
𝐾𝐾1
−− +  𝐾𝐾2

−− ≥  𝐾𝐾3
−   and  

𝐾𝐾1
−− − 𝐾𝐾2

+− + 𝐾𝐾2
−− − 𝐾𝐾1

+− =  𝐾𝐾3
−. 

In this case too, only two calorimeters are sufficient, 
one per each of the devices U1 and U2.  
 Suppose that during the observed time interval it 
is possible both heating and cooling of the system 
through the U3, i.e. that ∆𝑇𝑇  can take both positive 
and negative values. Let us denote the heating 
energy which is measured on the calorimeters at 
devices U1 and U2 with 𝐾𝐾1

+ and 𝐾𝐾2
+, and cooling 

energy with 𝐾𝐾1
− and 𝐾𝐾2

−. In observed case we have  
𝐾𝐾1

+ = ∫ 𝑑𝑑�̇�𝑄1
+𝜏𝜏

0 ,   𝐾𝐾1
− = −∫ 𝑑𝑑�̇�𝑄1

−𝜏𝜏
0 ,  

𝐾𝐾2
+ = ∫ 𝑑𝑑�̇�𝑄2

+𝜏𝜏
0 ,   𝐾𝐾2

− = −∫ 𝑑𝑑�̇�𝑄2
−𝜏𝜏

0 ,  

𝐾𝐾3
+ = ∫ 𝑑𝑑�̇�𝑄3

+𝜏𝜏
0 ,   𝐾𝐾3

− = −∫ 𝑑𝑑�̇�𝑄3
−𝜏𝜏

0 .  
Then we have  
𝐾𝐾1

+ = 𝐾𝐾1
++ + 𝐾𝐾1

+−,  
𝐾𝐾2

+ = 𝐾𝐾2
++ + 𝐾𝐾2

+−,  
𝐾𝐾1
− = 𝐾𝐾1

−− + 𝐾𝐾1
−+,  

𝐾𝐾2
− = 𝐾𝐾2

−− + 𝐾𝐾2
−+.  

𝐾𝐾1
+ − 𝐾𝐾1

− + 𝐾𝐾2
+ − 𝐾𝐾2

− =  𝐾𝐾3
+ −  𝐾𝐾3

−,  
but it is obvious that  
𝐾𝐾1

+ +  𝐾𝐾2
+ ≥  𝐾𝐾3

+  and  
𝐾𝐾1
− +  𝐾𝐾2

− ≥  𝐾𝐾3
−.  

The question is whether it is possible and if so how 
to get a share of heating energy  𝐾𝐾3

+ generated at the 
U3, which is transmitted to the devices U1 and U2, 
i.e.  𝐾𝐾1

++ − 𝐾𝐾2
−+  and 𝐾𝐾2

++ − 𝐾𝐾1
−+.  

The same question is also for the share of energy of 
cooling  𝐾𝐾3

− generated by the device U3, which is 
transmitted to the devices U1 and U2, i.e. 𝐾𝐾1

−− −
𝐾𝐾2

+− and 𝐾𝐾2
−− − 𝐾𝐾1

+−. The problem represents a 
system of 6 linear equations with 8 unknowns and 
there is no single solution7. To be able to get a share 
of energy of heating and energy of cooling which 
move from device U3 to devices U1 and U2, 
calorimeters on the devices U1 and U2 should be 
able to measure the energy of heating and cooling 
energy separately in each case when ∆𝑇𝑇 > 0  and 
when is ∆𝑇𝑇 < 0.  
 
 
6 Conclusion   
When the heating system contains more heating 
circuit transitions of heat energy between heating 
circuits appears. In the case of the observed heating 
system with two heat circular flows the heat transfer 
rate (heat flow) of heat which transitions from the 
warmer to the cooler circuit is given explicitly by 
formula. It is a quadratic function of the three-way 
valve parameter, and is a linear function of the 
difference of the output temperature of thermal 
devices U2 and U1. In the considered case, it is 
possible to explicitly determine the amount of heat 
flow of heat energy that comes out of the system 
through each heating circle through devices U1 and 
U2. There are typical cases that depend on the 
parameter of the three-way valve, the difference of 
thermal devices U2 and U1 output temperature and 
the difference between output and input temperature 
of the device U3 which brings energy into the 
system. They clearly set the conditions under which 
the input and two output of heat flow are positive or 
                                                 
7 The rank of the associated matrix of the system is 5.  
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negative. The total heat flow of a heating or a 
cooling system, which, in a given time interval, via 
the device U1 and U2 leaves the system generally 
does not have to be equal to the heat flow entering 
the system via the device U3 if typical cases B, D, 
B' and D' occur.  
In order to calculate the share of input thermal 
energy generated at U3 that is transferred to the 
output devices U1 and U2, in cases of only cooling 
or only heating, calorimeters embedded on the 
devices U1 and U2 must be capable of measuring 
energy of cooling as well as energy of heating i.e. 
they must have two counters. Then the input thermal 
energy on U3 can be calculated and there is no need 
for installing the calorimeter at U3.  
If in a given time interval both heating and cooling 
of systems through U3 occur it is not possible to 
uniquely determine the share of input thermal 
energy leaving the system via output devices U1 and 
U2 using calorimeters with two counters. It should 
be used calorimeters with four counters. Two 
counters are needed for measuring energy of heating 
and energy of cooling in the case when ∆𝑇𝑇 > 0 and 
another two for measuring energy of heating and 
energy of cooling in the case when ∆𝑇𝑇 < 0.  
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Appendix   
 
 
 

Typical 
cases 

 Signs of function 
Condition  �̇�𝑄1 �̇�𝑄2 �̇�𝑄3 

A 0 <  𝛼𝛼(𝑡𝑡2 − 𝑡𝑡1) < ∆𝑇𝑇 𝑡𝑡1 < 𝑡𝑡 < 𝑡𝑡2 < 𝑇𝑇 + + + 
AB 0 < ∆𝑇𝑇 = 𝛼𝛼(𝑡𝑡2 − 𝑡𝑡1) 𝑡𝑡1 < 𝑡𝑡 < 𝑡𝑡2 = 𝑇𝑇 + 0 + 
B 0 < ∆𝑇𝑇 <  𝛼𝛼(𝑡𝑡2 − 𝑡𝑡1) 𝑡𝑡1 < 𝑡𝑡 < 𝑇𝑇 < 𝑡𝑡2 + − + 

BC ∆𝑇𝑇 = 0 𝑡𝑡1 < 𝑡𝑡 = 𝑇𝑇 < 𝑡𝑡2 + − 0 

C −(1 − 𝛼𝛼)(𝑡𝑡2 − 𝑡𝑡1) < ∆𝑇𝑇 < 0 𝑡𝑡1 < 𝑇𝑇 < 𝑡𝑡 < 𝑡𝑡2 + − − 
CD ∆𝑇𝑇 = −(1 − 𝛼𝛼)(𝑡𝑡2 − 𝑡𝑡1) < 0 𝑡𝑡1 = 𝑇𝑇 < 𝑡𝑡 < 𝑡𝑡2 0 − − 
D ∆𝑇𝑇 < −(1− 𝛼𝛼)(𝑡𝑡2 − 𝑡𝑡1) < 0 𝑇𝑇 < 𝑡𝑡1 < 𝑡𝑡 < 𝑡𝑡2 − − − 

Table 1 
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Typical 
cases 

 Cases from 
Table 1 

Signs of function 
Condition ∆𝑇𝑇  �̇�𝑄1  �̇�𝑄2  �̇�𝑄3 

I 0 < 𝛼𝛼 < ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

 A + + + + 

 0 < 𝛼𝛼 = ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

 AB + + 0 + 

II 0 < ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

< 𝛼𝛼 < 1 < 1 + ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

 B + + − + 

II 0 < 𝛼𝛼 < 1 BC 0 + − 0 

II ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

< 0 < 𝛼𝛼 < 1 + ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

< 1 C − + − − 

 0 < 𝛼𝛼 = 1 + ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

< 1 CD − 0 − − 

III 1 + ∆𝑇𝑇
𝑡𝑡2−𝑡𝑡1

< 𝛼𝛼 < 1 D − − − − 

Table 2 
 
 
 

Typical 
cases 

 Signs of function 
Condition  �̇�𝑄1 �̇�𝑄2 �̇�𝑄3 

A' 0 < (1 −  𝛼𝛼)(𝑡𝑡1 − 𝑡𝑡2) < ∆𝑇𝑇 𝑡𝑡2 < 𝑡𝑡 < 𝑡𝑡1 < 𝑇𝑇 + + + 
A'B' 0 < ∆𝑇𝑇 = (1 −  𝛼𝛼)(𝑡𝑡1 − 𝑡𝑡2) 𝑡𝑡2 < 𝑡𝑡 < 𝑡𝑡1 = 𝑇𝑇 0 + + 
B' 0 < ∆𝑇𝑇 < (1 − 𝛼𝛼)(𝑡𝑡1 − 𝑡𝑡2) 𝑡𝑡2 < 𝑡𝑡 < 𝑇𝑇 < 𝑡𝑡1 − + + 

B'C' ∆𝑇𝑇 = 0 𝑡𝑡2 < 𝑡𝑡 = 𝑇𝑇 < 𝑡𝑡1 − + 0 

C' −𝛼𝛼(𝑡𝑡1 − 𝑡𝑡2) < ∆𝑇𝑇 < 0 𝑡𝑡2 < 𝑇𝑇 < 𝑡𝑡 < 𝑡𝑡1 − + − 
C'D' ∆𝑇𝑇 = −𝛼𝛼(𝑡𝑡1 − 𝑡𝑡2) < 0 𝑡𝑡2 = 𝑇𝑇 < 𝑡𝑡 < 𝑡𝑡1 − 0 − 
D' ∆𝑇𝑇 < −𝛼𝛼(𝑡𝑡1 − 𝑡𝑡2) < 0 𝑇𝑇 < 𝑡𝑡2 < 𝑡𝑡 < 𝑡𝑡1 − − − 

Table 3 
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